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Abstract—Given a set of labeled data with semantic descrip-
tions, zero-shot learning aims at recognizing objects from unseen
classes, where no instances of the classes are used during training.
Most existing methods solve this problem via embedding images
and labels into an embedding space and computing similarity
across different information sources. However, the similarity
calculation could be unreliable when the training and testing
data distributions are inconsistent. In this paper, we propose
a novel zero-shot learning model that forms a neighborhood-
preserving structure in the semantic embedding space and utilize
it to predict classifiers for unseen classes. By constructing a locally
connected graph for class embeddings, we exploit the structural
constraint of embeddings of similar classes and retain the global
structure in the semantic embedding space to obtain an effective
representation of semantic information. Experiment results on
three benchmark datasets demonstrate that the proposed method
generates effective semantic representations and out-performs
state-of-the-art methods.

Index Terms—object recognition, zero-shot learning, semantic
embeddings, manifold learning

I. INTRODUCTION

Supervised learning methods have achieved significant

progress in multiple fields, where performance are highly

dependent on large-scale labeled data that are not always avail-

able. In contrast, a previously unseen class can be recognized

when given a set of labeled data under the circumstances of

zero-shot learning (ZSL). To achieve this goal, an effective

description of unseen data imposes a significant impact on

this task. A practical way to describe unseen data is semantic

embedding, and a large number of semantic embedding meth-

ods have been explored, such as attributes, word vectors and

attempts that integrate multiple types of embeddings.

The current ZSL methods generally fall into four cate-

gories [1]: learning attribute classifiers-based, learning linear

compatibility-based, learning nonlinear compatibility-based

and hybrid models-based. Attribute classifiers-based methods

attempt to learn classifiers for each attribute [2], but deviation

may be introduced in the process of establishing classifiers.

Linear compatibility-based and nonlinear compatibility-based

methods directly measure the correlation between images and

semantic embeddings, but shift may occur with inconsistent

distributions of the training data and testing data. Thereafter,

hybrid models-based methods are proposed, which regard class

embeddings as the combination of seen class proportions. In

[3], semantic embeddings for unseen classes are synthesized

via the combination of semantic embeddings of seen classes

weighted by their corresponding probabilities from pre-trained

classifiers. Nevertheless, training classifiers in advance are

time-consuming and inefficient. Besides, a recent method [4]

achieving the state-of-the-art performance in ZSL utilizes

phantom classes to transfer knowledge between semantic

embeddings and classifiers, and thereby new classifiers are

synthesized via the convex combination of phantom classes

given the semantic embeddings. However, it ignores the local

structure among semantic embeddings, which might provide

more information to synthesize classifiers precisely.

In this paper, we propose a ZSL framework that assumes

and exploits more structural relations in the semantic embed-

ding space. The main idea is to explore the intuition that

semantic representations from similar classes will be projected

into the neighbor locations in the embedding space, which

would help to predict classifiers for unseen classes. Specially,

we leverage structural relations by taking the connection of

neighbor embeddings of similar classes into consideration

and propose to predict new classifiers through constructing

a locally connected graph for unseen classes. While exploring

the local relationship and retaining the global structure, the

proposed method strengthens the effect of neighbor embed-

dings and obtain a more effective representation of semantic

information. Fig. 1 illustrates our approach conceptually and

experiment results on three benchmark datasets demonstrate

the effectiveness of our method.

II. STRUCTURALLY CONSTRAINED CORRELATION

TRANSFER

A. Problem Formulation

Suppose there are nS image-label pairs {(xi, yi)}nS

i=1 from

S seen classes, xi is the ith image and yi is its label. The set of

images and the set of labels in the seen classes are denoted as

XS and YS , respectively. And there are nU unlabeled images

{(xj)}nU

j=1 from U unseen classes. The set of images and the

set of labels in the unseen classes are denoted as XU and YU ,

respectively. Here, we employ the semantic embeddings which

are associated with YU as the side information. So the ZSL

task is to obtain the correspondence XU → YU , where YU is

disjoint from YS .

We consider predicting classifiers to identify unseen classes

based on the knowledge acquired from seen classes. To achieve

this goal, a model space consisting of classifiers trained with

labeled data is constructed. Furthermore, to better exploit

the class information, a semantic space is also constructed,

which consists of class embeddings such as attributes or word
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Fig. 1. The structurally constrained correlation transfer method for zero-shot learning. Suppose there exist a semantic space and a model space lying on
the manifold, where the former consists of attributes and the latter consists of linear classifiers trained with labeled data. Each semantic embedding (s) is
represented by its neighbor phantom classes (p). By forming and projecting the locally-connected class correlation from the semantic space to the model
space via phantom classes (p and t), structural constraints in the semantic space can be transferred into the model space. Our method can predict classifiers
(u) for unseen classes when given the semantic representations.

vectors. To project the correlation from the semantic space into

the model space, each space is set on a manifold and phantom

classes are introduced to transfer knowledge between two

spaces. Considering the local structure in the semantic space,

we propose to impose structural constraint on embeddings of

similar classes, thus the semantic descriptions are constrained

to predict classifiers for unseen data. Therefore, by viewing

each semantic embedding and its neighbor phantom classes as

vertices, a bipartite graph can be formed in the semantic space.

The similarity between a semantic embedding and a phantom

class can be defined as the weight of the corresponding graph

edge. Considering the projection of the phantom classes from

the semantic space to the model space as a nonlinear dimen-

sionality reduction problem, the locally linear embedding [5]

is modified to solve this problem.

III. GRAPH CONSTRUCTION IN THE SEMANTIC SPACE

In this section, we propose to construct a graph for semantic

embeddings of classes considering the embeddings of similar

classes. Since attributes have shown to be superior to word

vectors of class names [6], we consider using attributes as the

semantic embeddings. Suppose each class i has a coordinate

si and all classes live on a manifold in the semantic space,

where i ∈ {1, 2, ..., S + U}. Besides, each classifier associated

with class i has a coordinate ui and all classifiers live on a

manifold in the model space. Furthermore, R phantom classes

are introduced to be viewed as the bridge between the semantic

space and the model space. The coordinate of each phantom

class is represented as pm (m = 1, ...,M) in the semantic

space and its corresponding classifier is represented as tm in

the model space. We presume that each semantic embedding

and its neighbor Rn phantom classes are lie on a locally linear

patch of the manifold in the semantic space. This assumption

allows us to reconstruct the nonlinear structure in the model

space from the bipartite graph constructed in the semantic

space. Inspired by [7], the weight between a real class si and

a phantom class pm in the semantic space is defined as:

wmi =
exp(−||pm − si||2)∑Rn

k=1 exp(−||pk − si||2)
(1)

where the scaled squared Euclidean distance are used as the

similarity measurement. We also explore Manhattan distance

and Chebyshev distance in the experiment, but neither of

them can describe the distance on manifold appropriately.

As shown in (1), the introduction of structurally constrained

correlation enables us to project a more informative nonlin-

ear structure from the semantic space to the model space.

By considering embeddings of similar classes, the proposed

method formulates locally connected graph and generates

more discriminative classifiers with the constructed graph. In

contrast, in previous work each embedded class is represented

as the convex combination of phantom classes in the semantic

space regardless of its neighboring embedding structure, which

dampens the effect of neighboring embeddings.

A. Predict Classifiers in the Model Space

In the model space, each classifier ui is represented by Rn

neighbor phantom classes tm via:

ui =

Rn∑

m=1

wmitm, ∀i ∈ {1, 2, ..., S + U} (2)

where the weight wmi is obtained from the constructed graph

in the semantic space.

Substituting (1) into (2), we could obatin the classifier ui

of an unseen image, whose semantic embedding is si. An

overview of the proposed method is depicted as in Fig. 1.

B. Parameter Learning

Since each phantom class pm could be represented by its

neighbor semantic embeddings as

pm =

Rn∑

i=1

μmisi, ∀i ∈ {1, 2, ..., S + U} (3)



Hence we minimize the following objective function:

min
{tm}Rm=1,{μmi}R,S

m,i=1

S∑

i=1

Rn∑

k=1

l(xk, ζyk,i;ui)

+λ
S∑

i=1

‖ui‖22 + γ

R,S∑

m,i=1

|μmi| ,

s.t. ui =

Rn∑

m=1

wmitm, ∀i ∈ {1, ..., S}

where one-vs-rest strategy is employed and squared hinge

loss l(x, y;u) = max(0, 1−yuTx)2 is used to ensure that clas-

sifiers focus on the overall classification error. The indicator

ζyk,i ∈ {−1, 1} represents whether yk = i or not.

Since the objective function is not convex for {tm}Rm=1 and

{μmi}R,S
m,i=1, we deploy an alternating optimization to solve it.

Furthermore, we test our method with the structured loss when

considering the class relatedness based on the Crammer-Singer

multi-class SVM loss [8], where

lstruct = max(0, max
i∈S−{yk}

||si − syk
||22 + ui

Txk − uT
yk
xk) (4)

In the training phase, we first calculate the Rn nearest neigh-

bors for each semantic embedding, then a local connection

graph is formed. The phantom classes in the semantic space

are projected into the model space. In the predicting phase, the

semantic embeddings of each unseen class are represented by

its Rn nearest phantom classes in the semantic space. When

projecting the phantom classes and retaining the weighted

graph from the the semantic space to the model space, new

classifiers are synthesized based on (2) and identify unseen

classes.

Since [5] has demonstrated that overlapping local neigh-

borhoods can provide information about global geometry

when they are collectively analyzed, our method exploits the

local distributions of the semantic embeddings while retaining

the global structure in the semantic space. When the local

semantic representations are projected into the model space,

the global nonlinear structure is recovered from locally linear

connections.

IV. EXPERIMENTS

This section presents an assessment to verify the effective-

ness of our model. We compare our method with the state-of-

the-art model [4], [9] and several representative methods [2],

[3], [6], [10]. The assessment is conducted on the public data

for consistency with prior methods.

A. Datasets and Settings

1) Training and Testing Set: We test our approach on three

benchmark datasets. The first dataset is Animal with Attributes

(AwA) [2], which contains 85 binary attributes and 30,475

images from 50 classes. The second dataset is CUB-200-

2011 Birds (CUB) [11], which contains 312 attributes and

11,788 images from 200 bird classes. The third dataset is SUN

TABLE I
STATISTICS OF THE THREE DATASETS USED IN THE EXPERIMENTS. WE

FOLLOW THE PRESCRIBED SPLIT IN [2] FOR AWA, THE PRESCRIBED SPLIT

(4 SPLITS FOR CUB AND 10 SPLITS FOR SUN) IN [4] AND REPORT THE

AVERAGE RESULTS.

Dataset # seen classes # unseen classes # total images # attributes
AwA 40 10 30,475 85

CUB 150 50 11,788 312

SUN 645/646 72/71 14,340 102

TABLE II
CLASSIFICATION ACCURACIES OF THE THREE DATASETS USED IN THE

EXPERIMENTS IN (%). FOR SYNC [4], WE CITE RESULTS FROM OUR

IMPLEMETATION. RESULTS WITH ′.∗′ ARE GENERATED WITH PARTICULAR

SPLITTING PROCEDURES.

Methods AwA CUB SUN
DAP [2] 41.4 - 22.2
IAP [2] 42.2 - 18.0

ConSE [3] 63.3 36.2 51.9
COSTA [10] 61.8 40.8 47.9

SJE [6] 66.7 50.1∗ -
AHLE [9] 49.4 27.3∗ -

SynCovo [4] 69.7 49.8 62.1

SynCstruct [4] 72.9 53.0 62.4

Oursovo 72.3 47.1 62.4

Oursstruct 74.6 48.5 62.7

TABLE III
THE VALUES OF NEIGHBOR PHANTOM CLASSES Rn FOR DIFFERENT

DATASETS. R IS THE NUMBER OF PHANTOM CLASSES.

Datasets AwA CUB SUN
Rn (ovo) 0.4R 0.46R 0.713R

Rn (struct) 0.4R 0.45R 0.748R

Attribute (SUN) [12], which contains 102 attributes and 14,340

images from 717 scene categories. Table I shows the statistics

and split methods of these datasets.

2) Semantic space: We experiment with the features ex-

tracted with AlexNet [13] for images from AwA and CUB,

and features extracted with GoogLeNet [14] by Caffe package

[15] for images from SUN.

3) Performance Metric: The normalized multi-class clas-

sification accuracy is used as the evaluation protocol as in

existing works.

B. Implementation Details

We obtain the class-attribute representation by averaging the

attribute representations of the images in the same class. All

variables are initialized randomly and hyper-parameters are

selected based on the training data for each dataset via cross-

validation strategy. Note that the cross-validation strategy

splits the classes instead of splitting training data according

to [4]. Besides, the distance between the unconnected vertices

is set as ∞. Furthermore, the numbers of neighbor phantom

classes Rn are set as the fractional multiples of the number of

phantom classes R at the beginning, then we gradually narrow

down the range based on the accuracy change to obtain more

accurate results.

C. Results

In order to validate the effectiveness of the proposed method

and compare it with representative methods, we conduct the

following three experiments.



1) Comparision with Representative Models: In order to

study the performance of the proposed model, we compare

the ZSL classification accuracy of our method with seven

representive approaches, as shown in Table II. We denote our

method as Oursovo (one-vs-others) and Oursstruct (structured

loss) when considering two different strategies. We observe

that our method achieves better performance compared with

the published methods in most scenarios due to the considera-

tion of structural constraint of semantic embeddings. The best

classification accuracies of our method on three datasets are

74.6%, 48.5% and 62.7%, which outperforms all models on

AwA and SUN under two different loss constraints. We also

notice that the performance of the proposed method is less

effective on CUB, which has more attributes compared with

the other two datasets as listed in Table I. A probable reason is

that some of the attributes are unreliable, thus the constructed

graph may have large weights between non-similar classes,

reducing the discriminativity of the combined classifier.

2) Ablation Experiment on Structurally Constrained Cor-
relation Transfer: To further illustrate the effectiveness of

our method, we test our methods with one-vs-others strategy

using different values of Rn on AwA, CUB and SUN, as

shown in Fig. 2. From the figure, we can observe that as

the values of Rn increase, the classification accuracy tends

to present an up and down trend, which shows that the local

connectivity constraint over embeddings of phantom classes

successfully improves the classification accuracy, proving that

our assumption that each class embedding and its neighbors

lie on a locally linear patch on the manifold is valid. Note that

model [4] can be considered as a special case of our method

when Rn = R, which demonstrates that by considering the

structural relations in the semantic embedding space, we can

obtain a more discriminative classifier for unseen classes.

(a) (b)

Fig. 2. Performance results with different neighbor phantom classes Rn

with one-vs-others strategy (the horizontal axis corresponds to the proportion
of Rn/R).

3) The Number of Neighbor Phantom Classes Rn: To

explore whether the values of Rn are the same in different

datasets, we conduct experiments under different constraints.

The values of Rn in different datasets are shown in Table III.

We can preliminarily conclude that Rn increases with the

increase of the amount of unseen classes and basically remains

unchanged with different loss functions. We infer that the

values of Rn are related to the data distribution and are inde-

pendent of the loss constraints. Note that in the experiment, we

set R = S and we will further explore the effects of different

values of R to verify our conclusion.

V. CONCLUSION

We propose to solve ZSL problem by introducing the

structurally constrained correlation transfer into the manifold

based semantic embedding framework. To strengthen the struc-

tural constraint of embeddings of similar classes and reserve

the global structure in the semantic embedding space, the

proposed method explores to form and project the neighbor-

preserving structure from the semantic space to the model

space and predict classifiers for unseen data. Experiments

on three benchmark datasets validate the efficiency of the

proposed method.
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